Drone transport ‘does not affect blood samples’

30 Jul

Bringing health care to millions of people in rural and impoverished parts of the

world is often hampered by impassable roads and long distances between clinics and labs.

Now, a new study suggests using medical drones to carry blood samples could help by

giving health workers quick access to lab tests needed for diagnoses and

treatments.

medical drone
Pathologist Timothy Amukele, left, and engineer Robert Chalmers fly the drone that was tested to see if it could carry blood samples to a remote lab without damaging them.
Image credit: Johns Hopkins Medicine

The study – a collaboration between a pathologist and engineers – was carried out at

Johns Hopkins University School of Medicine in Baltimore, MD, and is published in the

journal PLOS ONE.

The purpose was to test the feasibility of using a drone courier system to transport

blood to diagnostic labs and to find out whether the blood samples arrive in

good condition for diagnostic testing.

The study is thought to be the first to rigorously test the effect of drone travel on

biological samples.

The team found that common and routine blood test results are not affected by

up to 40 minutes of travel on the hobby-sized drones.

Lead author Timothy Kien Amukele, an assistant professor of pathology and director of

a laboratory collaboration between Johns Hopkins and Makerere University in Uganda,

explains:

“Biological samples can be very sensitive and fragile. That sensitivity makes even

the pneumatic-tube systems used by many hospitals, for example, unsuitable for

transporting blood for certain purposes.”

Flown and non-flown blood samples underwent 33 different lab tests

The features of drone use that the team was particularly concerned about were the

sudden acceleration when the device launches and the jostling when it lands. Such

movements could destroy blood cells or cause the blood to coagulate.

“I thought all kinds of blood tests might be affected,” notes Prof. Amukele,

“but our study shows they weren’t, so that was cool.”

For the study, the team collected six blood samples from 56 health volunteers at Johns

Hopkins Hospital and drove them to a location an hour’s drive away on days when the

temperature was 70 °F (21 °C) or higher.

Half the samples were then packaged and placed in a hand-launched, fixed-wing drone and

flown around for periods of 6-38 minutes.

In line with Federal Aviation Administration (FAA) rules, the flights took place in an

unpopulated area, the drone stayed below 100 m, and it remained in the certified pilot’s

sight all the time.

All the samples (flown and non-flown) were then driven to a lab at the hospital where

they underwent the 33 most common lab tests. These tests account for around 80% of all

tests done on blood samples and include, for example, tests for sodium and glucose and red

blood cell count.

Prof. Amukele says when they compared the results between the flown and non-flown

samples, “the flight really had no impact.”

Next step is to pilot the drone in Africa

However, the team did note that the flown versus non-flown samples showed different

results on the test for total carbon dioxide – the so-called the bicarbonate test.

Prof. Amukele says they are not sure why, but one reason could be the samples

sat around for up to 8 hours before they were tested.

He notes they could not determine whether the out-of-range results were due to the

flight or the time lag and there is no way to find out, except perhaps by flying blood

samples around the hospital straight after taking them, “but neither the FAA nor Johns

Hopkins would like drones flying around the hospital.”

The next step is likely to be a pilot study in Africa, where clinics can be 60 or more

miles away from testing labs. Prof. Amukele explains some of the potential benefits:

“A drone could go 100 km in 40 minutes. They’re less expensive than

motorcycles, are not subject to traffic delays, and the technology already exists for the

drone to be programmed to ‘home’ to certain GPS coordinates, like a carrier

pigeon.”

In the following video, Prof. Amukele and colleagues demonstrate the drone.

Meanwhile, Medical News Today recently reported that within the next 2 years,

we shall see human trials of lab-made blood. The

intention, say the UK’s NHS (National Health Service) Blood and Transplant service, is to

help people with complex blood types for whom it is difficult to find matching

donors.

Written by Catharine Paddock PhD

Copyright: Medical News Today


Read more breaking health news on our homepage